8.Redis篇

1、redis的数据类型,以及每种数据类型的使用场景

回答:一共五种

(一)String

这个其实没啥好说的,最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。

(二)hash86

这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。博主在做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。

(三)list

使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。本人还用一个场景,很合适—取行情信息。就也是个生产者和消费者的场景。LIST可以很好的完成排队,先进先出的原则。

(四)set

因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。

(五)sorted set

sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作

2、Redis 为什么是单线程的

官方FAQ表示,因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了(毕竟采用多线程会有很多麻烦!)Redis利用队列技术将并发访问变为串行访问

(1) 绝大部分请求是纯粹的内存操作(非常快速)

(2) 采用单线程,避免了不必要的上下文切换和竞争条件

(3) 非阻塞IO优点:速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1), 支持丰富数据类型,支持string,list,set,sorted set,hash,支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除如何解决redis的并发竞争key问题, 同时有多个子系统去set一个key。这个时候要注意什么呢? 不推荐使用redis的事务机制。因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候, 这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。如果对这个key操作,不要求顺序: 准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可, 如果对这个key操作,要求顺序: 分布式锁+时间戳。 假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。利用队列,将set方法变成串行访问也可以redis遇到高并发,如果保证读写key的一致性对redis的操作都是具有原子性的,是线程安全的操作,你不用考虑并发问题,redis内部已经帮你处理好并发的问题了。

3、单线程的redis为什么这么快

redis的速度非常的快,单机的redis就可以支撑每秒10几万的并发,相对于mysql来说,性能是mysql的几十倍。速度快的原因主要有几点:

(1) 完全基于内存操作

(2) C语言实现,优化过的数据结构,基于几种基础的数据结构,redis做了大量的优化,性能极高

(3) 使用单线程,无上下文的切换成本

(4) 基于非阻塞的IO多路复用机制

4、那为什么Redis6.0之后又改用多线程呢?

redis使用多线程并非是完全摒弃单线程,redis还是使用单线程模型来处理客户端的请求,只是使用多线程来处理数据的读写和协议解析,执行命令还是使用单线程。这样做的目的是因为redis的性能瓶颈在于网络IO而非CPU,使用多线程能提升IO读写的效率,从而整体提高redis的性能。

5、知道什么是热key吗?热key问题怎么解决?

所谓热key问题就是,突然有几十万的请求去访问redis上的某个特定key,那么这样会造成流量过于集中,达到物理网卡上限,从而导致这台redis的服务器宕机引发雪崩

针对热key的解决方案: (1) 提前把热key打散到不同的服务器,降低压力 (2) 加入二级缓存,提前加载热key数据到内存中,如果redis宕机,走内存查询

6、什么是缓存击穿、缓存穿透、缓存雪崩?

缓存击穿

缓存击穿的概念就是单个key并发访问过高,过期时导致所有请求直接打到db上,这个和热key的问题比较类似,只是说的点在于过期导致请求全部打到DB上而已。

解决方案:

(1) 加锁更新,比如请求查询A,发现缓存中没有,对A这个key加锁,同时去数据库查询数据,写入缓存,再返回给用户,这样后面的请求就可以从缓存中拿到数据了。 (2) 将过期时间组合写在value中,通过异步的方式不断的刷新过期时间,防止此类现象。

缓存穿透

缓存穿透是指查询不存在缓存中的数据,每次请求都会打到DB,就像缓存不存在一样。针对这个问题,加一层布隆过滤器。布隆过滤器的原理是在你存入数据的时候,会通过散列函数将它映射为一个位数组中的K个点,同时把他们置为1。这样当用户再次来查询A,而A在布隆过滤器值为0,直接返回,就不会产生击穿请求打到DB了。显然,使用布隆过滤器之后会有一个问题就是误判,因为它本身是一个数组,可能会有多个值落到同一个位置,那么理论上来说只要我们的数组长度够长,误判的概率就会越低,这种问题就根据实际情况来就好了。

缓存雪崩

当某一时刻发生大规模的缓存失效的情况,比如你的缓存服务宕机了,会有大量的请求进来直接打到DB上,这样可能导致整个系统的崩溃,称为雪崩。雪崩和击穿、热key的问题不太一样的是,他是指大规模的缓存都过期失效了。

针对雪崩几个解决方案:

(1) 针对不同key设置不同的过期时间,避免同时过期 (2) 限流,如果redis宕机,可以限流,避免同时刻大量请求打崩DB (3) 二级缓存,同热key的方案。

7、Redis的过期策略有哪些?

redis主要有2种过期删除策略

惰性删除

惰性删除指的是当我们查询key的时候才对key进行检测,如果已经达到过期时间,则删除。显然,他有一个缺点就是如果这些过期的key没有被访问,那么他就一直无法被删除,而且一直占用内存。

定期删除

定期删除指的是redis每隔一段时间对数据库做一次检查,删除里面的过期key。由于不可能对所有key去做轮询来删除,所以redis会每次随机取一些key去做检查和删除。

8、那么定期+惰性都没有删除过期的key怎么办?

假设redis每次定期随机查询key的时候没有删掉,这些key也没有做查询的话,就会导致这些key一直保

存在redis里面无法被删除,这时候就会走到redis的内存淘汰机制。

(1) volatile-lru:从已设置过期时间的key中,移出最近最少使用的key进行淘汰 (2) volatile-ttl:从已设置过期时间的key中,移出将要过期的key (3) volatile-random:从已设置过期时间的key中随机选择key淘汰 (4) allkeys-lru:从key中选择最近最少使用的进行淘汰 (5) allkeys-random:从key中随机选择key进行淘汰 (6) noeviction:当内存达到阈值的时候,新写入操作报错

9、Redis持久化机制

redis持久化方案分为RDB和AOF两种。

RDB

RDB持久化可以手动执行也可以根据配置定期执行,它的作用是将某个时间点上的数据库状态保存到RDB文件中,RDB文件是一个压缩的二进制文件,通过它可以还原某个时刻数据库的状态。由于RDB文件是保存在硬盘上的,所以即使redis崩溃或者退出,只要RDB文件存在,就可以用它来恢复还原数据库的状态。可以通过SAVE或者BGSAVE来生成RDB文件。SAVE命令会阻塞redis进程,直到RDB文件生成完毕,在进程阻塞期间,redis不能处理任何命令请求,这显然是不合适的。BGSAVE则是会fork出一个子进程,然后由子进程去负责生成RDB文件,父进程还可以继续处理命令请求,不会阻塞进程。

AOF

AOF和RDB不同,AOF是通过保存redis服务器所执行的写命令来记录数据库状态的。AOF通过追加、写入、同步三个步骤来实现持久化机制。当AOF持久化处于激活状态,服务器执行完写命令之后,写命令将会被追加append到aof_buf缓冲区的末尾在服务器每结束一个事件循环之前,将会调用flushAppendOnlyFile函数决定是否要将aof_buf的内容保存到AOF文件中,可以通过配置appendfsync来决定。

always ##aof_buf内容写入并同步到AOF文件

everysec ##将aof_buf中内容写入到AOF文件,如果上次同步AOF文件时间距离现在超过1秒,则再次对AOF文件进行同步

no ##将aof_buf内容写入AOF文件,但是并不对AOF文件进行同步,同步时间由操作系统决定

如果不设置,默认选项将会是everysec,因为always来说虽然最安全(只会丢失一次事件循环的写命令),但是性能较差,而everysec模式只不过会可能丢失1秒钟的数据,而no模式的效率和everysec相仿,但是会丢失上次同步AOF文件之后的所有写命令数据。

10、怎么实现Redis的高可用?

要想实现高可用,一台机器肯定是不够的,而redis要保证高可用,有2个可选方案。

主从架构

主从模式是最简单的实现高可用的方案,核心就是主从同步。主从同步的原理如下:

(1) slave发送sync命令到master (2) master收到sync之后,执行bgsave,生成RDB全量文件 (3) master把slave的写命令记录到缓存 (4) bgsave执行完毕之后,发送RDB文件到slave,slave执行 (5) master发送缓存中的写命令到slave,slave执行

这里我写的这个命令是sync,但是在redis2.8版本之后已经使用psync来替代sync了,原因是sync命令非常消耗系统资源,而psync的效率更高。

哨兵

基于主从方案的缺点还是很明显的,假设master宕机,那么就不能写入数据,那么slave也就失去了作用,整个架构就不可用了,除非你手动切换,主要原因就是因为没有自动故障转移机制。而哨兵(sentinel)的功能比单纯的主从架构全面的多了,它具备自动故障转移、集群监控、消息通知等功能。

哨兵可以同时监视多个主从服务器,并且在被监视的master下线时,自动将某个slave提升为master,然后由新的master继续接收命令。整个过程如下:

(1) 初始化sentinel,将普通的redis代码替换成sentinel专用代码

(2) 初始化masters字典和服务器信息,服务器信息主要保存ip:port,并记录实例的地址和ID

(3) 创建和master的两个连接,命令连接和订阅连接,并且订阅sentinel:hello频道

(4) 每隔10秒向master发送info命令,获取master和它下面所有slave的当前信息

(5) 当发现master有新的slave之后,sentinel和新的slave同样建立两个连接,同时每个10秒发送info命令,更新master信息

(6) sentinel每隔1秒向所有服务器发送ping命令,如果某台服务器在配置的响应时间内连续返回无效回复,将会被标记为下线状态

(7) 选举出领头sentinel,领头sentinel需要半数以上的sentinel同意

(8) 领头sentinel从已下线的的master所有slave中挑选一个,将其转换为master

(9) 让所有的slave改为从新的master复制数据

(10) 将原来的master设置为新的master的从服务器,当原来master重新回复连接时,就变成了新master的从服务器

sentinel会每隔1秒向所有实例(包括主从服务器和其他sentinel)发送ping命令,并且根据回复判断是否已经下线,这种方式叫做主观下线。当判断为主观下线时,就会向其他监视的sentinel询问,如果超过半数的投票认为已经是下线状态,则会标记为客观下线状态,同时触发故障转移。

11、能说说redis集群的原理吗?

如果说依靠哨兵可以实现redis的高可用,如果还想在支持高并发同时容纳海量的数据,那就需要redis集群。redis集群是redis提供的分布式数据存储方案,集群通过数据分片sharding来进行数据的共享,同时提供复制和故障转移的功能。

节点

一个redis集群由多个节点node组成,而多个node之间通过cluster meet命令来进行连接,节点的握手过程:

(1) 节点A收到客户端的cluster meet命令

(2) A根据收到的IP地址和端口号,向B发送一条meet消息

(3) 节点B收到meet消息返回pong

(4) A知道B收到了meet消息,返回一条ping消息,握手成功

(5) 最后,节点A将会通过gossip协议把节点B的信息传播给集群中的其他节点,其他节点也将和B进行握手

槽slot

redis通过集群分片的形式来保存数据,整个集群数据库被分为16384个slot,集群中的每个节点可以处理0-16384个slot,当数据库16384个slot都有节点在处理时,集群处于上线状态,反之只要有一个slot没有得到处理都会处理下线状态。通过cluster addslots命令可以将slot指派给对应节点处理。slot是一个位数组,数组的长度是16384/8=2048,而数组的每一位用1表示被节点处理,0表示不处理,如图所示的话表示A节点处理0-7的slot。当客户端向节点发送命令,如果刚好找到slot属于当前节点,那么节点就执行命令,反之,则会返回一个MOVED命令到客户端指引客户端转向正确的节点。(MOVED过程是自动的)如果增加或者移出节点,对于slot的重新分配也是非常方便的,redis提供了工具帮助实现slot的迁移,整个过程是完全在线的,不需要停止服务。

故障转移

如果节点A向节点B发送ping消息,节点B没有在规定的时间内响应pong,那么节点A会标记节点B为pfail疑似下线状态,同时把B的状态通过消息的形式发送给其他节点,如果超过半数以上的节点都标记B为pfail状态,B就会被标记为fail下线状态,此时将会发生故障转移,优先从复制数据较多的从节点选择一个成为主节点,并且接管下线节点的slot,整个过程和哨兵非常类似,都是基于Raft协议做选举。

12、热点数据和冷数据是什么

热点数据,缓存才有价值

对于冷数据而言,大部分数据可能还没有再次访问到就已经被挤出内存,不仅占用内存,而且价值不大。频繁修改的数据,看情况考虑使用缓存对于上面两个例子,寿星列表、导航信息都存在一个特点,就是信息修改频率不高,读取通常非常高的场景。对于热点数据,比如我们的某IM产品,生日祝福模块,当天的寿星列表,缓存以后可能读取数十万次。 再举个例子,某导航产品,我们将导航信息,缓存以后可能读取数百万次。

数据更新前至少读取两次

缓存才有意义。这个是最基本的策略,如果缓存还没有起作用就失效了,那就没有太大价值了。那存不存在,修改频率很高,但是又不得不考虑缓存的场景呢?有!比如,这个读取接口对数据库的压力很大,但是又是热点数据,这个时候就需要考虑通过缓存手段,减少数据库的压力,比如我们的某助手产品的,点赞数,收藏数,分享数等是非常典型的热点数据,但是又不断变化,此时就需要将数据同步保存到Redis缓存,减少数据库压力。

13、Memcache与Redis的区别

(1) 存储方式 Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。 Redis有部份存在硬盘上,redis可以持久化其数据

(2) 数据支持类型 memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型 ,提供list,set,zset,hash等数据结构的存储

(3) 使用底层模型不同 它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。 Redis直接自己构建了VM机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。

(4) value 值大小不同:Redis 最大可以达到 1gb;memcache 只有 1mb

(5) redis的速度比memcached快很多

(6) Redis支持数据的备份,即master-slave模式的数据备份。

14、Redis 常见性能问题和解决方案?

(1) Master 最好不要做任何持久化工作,如 RDB 内存快照和 AOF 日志文件

(2) 如果数据比较重要,某个 Slave 开启 AOF 备份数据,策略设置为每秒同步一次

(3) 为了主从复制的速度和连接的稳定性, Master 和 Slave 最好在同一个局域网内

(4) 尽量避免在压力很大的主库上增加从库

(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即: Master <- Slave1 <- Slave2 <-Slave3…

15、为什么Redis的操作是原子性的,怎么保证原子性的?

对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。Redis本身提供的所有API都是原子操作,Redis中的事务其实是要保证批量操作的原子性。多个命令在并发中也是原子性的吗?不一定, 将get和set改成单命令操作,incr 。使用Redis的事务,或者使用Redis+Lua==的方式实现.

16、Redis事务

Redis事务功能是通过MULTI、EXEC、DISCARD和WATCH 四个原语实现的, Redis会将一个事务中的所有命令序列化,然后按顺序执行。

redis 不支持回滚“Redis 在事务失败时不进行回滚,而是继续执行余下的命令”, 所以 Redis 的内部可以保持简单且快速。

如果在一个事务中的命令出现错误,那么所有的命令都不会执行;如果在一个事务中出现运行错误,那么正确的命令会被执行。

(1) MULTI命令用于开启一个事务,它总是返回OK。 MULTI执行之后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当EXEC命令被调用时,所有队列中的命令才会被执行 。

(2) EXEC:执行所有事务块内的命令。返回事务块内所有命令的返回值,按命令执行的先后顺序排列。 当操作被打断时 ,返回空值nil 。

(3) 通过调用DISCARD,客户端可以清空事务队列,并放弃执行事务, 并且客户端会从事务状态中退出。

(4) WATCH 命令可以为 Redis 事务提供 check-and-set (CAS)行为。 可以监控一个或多个键,一旦其中有一个键被修改(或删除),之后的事务就不会执行,监控一直持续到EXEC命令。